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What is a Gaussian Process?

I A stochastic process is a generalzation of a probability density
to functions

I Gaussian processes are stochastic processes that are Gaussian
I Using Gaussian processes makes computations easier



Why Use Guasssian Process Regression (GPR) ?

I In supervised Machine Learning (ML) we often want to find a
function

I GPR focuses on this task
I GPR methods combine

I Data & Models (casuality)
I Algorithms and prediction



Supervised Machine Learning and GPR

-Goal: Find a function to predict the data

-What can we do:

1. Select a class of functions, find the best function in that class
2. Test all possible functions, use a prior to weight models

I GPR allows us to try (2)



Supervised Machine Learning and GPR Graphically

Figure 1: Priors and Posteriors



Basic Regression

I There are several ways to interpret GPR models

1. Function-space view
I The GP defines a distribution over functions
I Inference takes place directly in the space of functions

2. Weight-space view
I More comparable to simple regression methods



The Weight-Space View I

I In a simple linear regression: output is a linear combination of
inputs

I In a Bayesian framework we need:
I A training set D of n observables

I The simple linear model

f (x) = x>w , and y = f (x) + ε

here,

ε ∼ N(0, σ2
n)



The Weight-Space View II

I We want to look at the probability density of the observations
given parameters

p(y |X ,w) =
n∏

i=1
p(yi |xi ,w)

= 1
(2πσ2

n)n/2 exp
(
− 1

2σ2
n
|y − X>w |2

)
= N(X>w , σ2

nI)

I In this Bayesian framework we need to specify a prior on our
weights

w ∼ N(0,ΣP)



The Weight-Space View III
We have p(y |X ,w), knowing this we can apply Bayes’ rule to find
our posterior

posterior = likelihood× prior
marginal likelihood , or p(w |y ,X ) = p(y |X ,w)p(w)

p(y |X )

Thus our posterior will be given by

p(w |X , y) ∝ exp(− 1
2σ2

n
(y − X>w)>(y − X>w)) exp(−1

2w
>Σ−1

p w)

Simplifying,

p(w |X , y) ∼ N
( 1
σ2

n
A−1Xy ,A−1

)
, A = σ−2

n XX> + Σ−1
p



The Weight-Space View IV

I To make predictions for a test case we average over all possible
parameter values

I Our predictive distribution f∗ ≡ f (x∗), is given by averaging the
output of all possible linear models

p(f∗|x∗,X , y) =
∫

p(f∗|x∗,w)p(w |X , y)dw =
∫

x>∗ w · p(w |X , y)dw

= N
( 1
σ2

n
x>∗ A−1Xy , x>∗ A−1x∗

)



Projecting into a Feature-Space
I We are not limit to linear regression models
I We can replace our linear inputs x with a feature space φ(x)

I φ(x) projects x into another space
I x : φ(x) = (1, x , x2, x3, . . . )

I In this case our model is

f (x) = φ(x)>w , and y = f (x) + ε

I Our predictive distribution will become,

p(f∗|x∗,X , y) =
∫

p(f∗|x∗,w)p(w |X , y)dw

=
∫
φ(x∗)>w · p(w |X , y)dw

= N
( 1
σ2

n
φ(x∗)>A−1Φy , φ(x∗)>A−1φ(x∗)

)



The Function-Space View I
I In this setting we use Gaussian Processes to describe a

distribution over functions
I Recall: A Gaussian process is a collection of random variables

any finite number of which have a joint Gaussian distribution
I By this definition we can completely define a Gaussian process

by its mean function and covariance function

m(x) = E[f (x)]

and
K (x , x ′) = E[(f (x)−m(x))(f (x ′)−m(x ′))]

.

We will write this Gaussian process as,

f (x) ∼ GP(m(x), k(x , x ′))

.



The Function-Space View II
A simple example with Bayesian Linear regression f (x) = φ(x)>w
with prior w ∼ N(0,Σp).

Here,
E[f (x)] = φ(x)>E[w ] = 0

and

E[f (x)f (x ′)] = φ(x)>E[ww>]φ(x ′) = φ(x)>Σpφ(x ′)

.

We also need a covariance function to specify the covariance
between pairs of random variables,

cov(f (xp), f (xq)) = k(xp, xq) = exp
(
− 1

2 |xp − xq|2
)

We can now look at the distribution over functions

f∗ ∼ N(0,K (x∗, x∗))



The Function-Space View III

Figure 2: More Priors and Posteriors



Prediction with Noise-Free Observations

The joint distribution of the training outputs f and test outputs f∗
is given by, [

f
f∗

]
= N

(
0,

[
K (X ,X ) K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])

Here,

f∗|X∗,X , f ∼ N(K (X∗,X )K (X ,X )−1f ,
K (X∗,X∗)− K (X∗,X )K (X ,X )−1K (X ,X∗)).



Prediction with Noisy Observations

Now, y = f (x) + ε

Thus our prior on noisy observations is cov(y) = K (X ,X ) + σ2
nI.

The joint distribution of training outputs y and test outputs f∗ will
be, [

y
f∗

]
= N

(
0,

[
K (X ,X ) + σ2

nI K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])
Here,

f∗|X∗,X , y ∼ N(f̄∗, cov(f∗))

where
f̄∗ ≡ K (X∗,X )[K (X ,X ) + σ2

nI]−1y

and

cov(f∗) = K (X∗,X∗)− K (X∗,X )[K (X ,X ) + σ2
nI]−1K (X ,X∗)



A Basic Algorithm for GPR

Using X (inputs), y (targets), k (covariance function), x∗ (test
input), and σ2

n (noise level)

1. L = cholesky(K + σ2
nI), set α = L> \ (L \ y)

2. f̄∗ = k>∗ α, set v = L \ k∗
3. V[f∗] = k(x∗, x∗)− v>v
4. log p(y |X ) = −1

2y
>α−

∑
i log Li ,i − n

2 log 2π
5. Return, f̄∗ (mean), V[f∗] (variance), and the log marginal

likelihood.



Some Code I



How Can We Use GPR in Economics?

I Optimal Taxation and Insurance using Machine Learning -
Sufficient Statistic and Beyond
I By Maximilian Kasy

I


