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What is a Gaussian Process?

P A stochastic process is a generalzation of a probability density
to functions
» Gaussian processes are stochastic processes that are Gaussian
» Using Gaussian processes makes computations easier



Why Use Guasssian Process Regression (GPR) 7

» In supervised Machine Learning (ML) we often want to find a
function

» GPR focuses on this task

» GPR methods combine

» Data & Models (casuality)
» Algorithms and prediction



Supervised Machine Learning and GPR

-Goal: Find a function to predict the data

-What can we do:

1. Select a class of functions, find the best function in that class

2. Test all possible functions, use a prior to weight models

» GPR allows us to try (2)



Supervised Machine Learning and GPR Graphically
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Figure 1: Priors and Posteriors



Basic Regression

> There are several ways to interpret GPR models

1. Function-space view

» The GP defines a distribution over functions

» Inference takes place directly in the space of functions
2. Weight-space view

» More comparable to simple regression methods



The Weight-Space View |

» In a simple linear regression: output is a linear combination of
inputs

» In a Bayesian framework we need:
» A training set D of n observables

» The simple linear model

f(x)=x"w, and y="1f(x)+e

here,

e~ N(0,07)



The Weight-Space View Il

» We want to look at the probability density of the observations
given parameters

p(y|X,w) =[] p(yilxi, w)
i=1

1 1
= Wexp ( - 2f'%b/ - XTW‘2> = N(X"w, o2l

» In this Bayesian framework we need to specify a prior on our
weights

w ~ N(0,Xp)



The Weight-Space View Il

We have p(y|X, w), knowing this we can apply Bayes' rule to find
our posterior

likelihood x prior _ py|X, w)p(w)

or plwly: X) =72 0%

osterior =
P marginal likelihood’

Thus our posterior will be given by

1 1 _
b= XTw) Ty = X w)) exp(— 5w T, w)

p(w|X,y) o exp(—
Simplifying,

1
p(w|X,y) ~ N<02A‘1Xy,A_1>, A=o2XXT + 5,1

n



The Weight-Space View IV

> To make predictions for a test case we average over all possible
parameter values

» Our predictive distribution f. = f(x,), is given by averaging the
output of all possible linear models

Pl Xoy) = [ pUE e w)p(wiX, y)dw = [ xTw - p(w]X. y)dw

1
= N<2XIA_1X_)/, XJA_1X*>
O-n



Projecting into a Feature-Space

> We are not limit to linear regression models
» We can replace our linear inputs x with a feature space ¢(x)

> $(x) projects x into another space
> x:o(x) = (1,x,x%,x3,...)

» In this case our model is

f(x) = o(x) " w, and y="1f(x)+¢
» Our predictive distribution will become,
p(Edxe X,y) = [ (£l w)p(wlX. y)dw
= [ o(x)Tw - plwlX.y)dw
— N(Ulr%qb(x*)TA_l(Dy,qb(x*)TA_lqb(x*))



The Function-Space View |

» In this setting we use Gaussian Processes to describe a
distribution over functions

» Recall: A Gaussian process is a collection of random variables
any finite number of which have a joint Gaussian distribution

» By this definition we can completely define a Gaussian process
by its mean function and covariance function

m(x) = E[f(x)]

and
K(x,x") = E[(f(x) — m(x))(f(x") = m(x))]

We will write this Gaussian process as,

f(x) ~ GP(m(x), k(x,x"))



The Function-Space View Il

A simple example with Bayesian Linear regression f(x) = ¢(x)'w
with prior w ~ N(0,X,).

Here,
E[f(x)] = ¢(x) 'E[w] = 0

and

E[f(x)f(x')] = ¢(x) "Elww "]o(x") = ¢(x) " Zpo(x')

We also need a covariance function to specify the covariance
between pairs of random variables,

cov(F(xp) Fx0) = KOs x0) = 0 ( = 30—l

We can now look at the distribution over functions

fi ~ N(0, K(xx, xx))



The Function-Space View IlI
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Figure 2: More Priors and Posteriors



Prediction with Noise-Free Observations

The joint distribution of the training outputs f and test outputs f,

is given by,
H N (0 [K(X,X) K(X,X*)D
A C K (X X)) K(Xe, X,)
Here,

£ Xe, X, £ ~ N(K (X, X)K(X, X)L,
K (X, X2) — K(Xe, X)K(X, X) 1K (X, X,)).



Prediction with Noisy Observations

Now, y = f(x) + ¢
Thus our prior on noisy observations is cov(y) = K(X, X) + o2I.

The joint distribution of training outputs y and test outputs £, will

be,

y K(X,X) +opl  K(X, X.)

=N|o,

f. K(Xi, X)  K(Xe, Xi)

Here, B
£ Xi, X,y ~ N(fi, cov(f))
where B
f. = K(Xe, X)[K(X, X) + 021ty

and

cov(f,) = K(Xs, X.) — K(X., X)[K(X, X) + 2 K(X, X,)



A Basic Algorithm for GPR

Using X (inputs), y (targets), k (covariance function), x, (test
input), and o2 (noise level)

o e b=

L = cholesky(K + o2/), set a = LT\ (L\ y)
fo=kla, setv=1L\k,
VIf] = k(x, %) — vv
log p(y|X) = =3y a— Y ;log L;; — 5 log 2

Return, f, (mean), V[f,] (variance), and the log marginal
likelihood.



Some Code |



How Can We Use GPR in Economics?

» Optimal Taxation and Insurance using Machine Learning -
Sufficient Statistic and Beyond
» By Maximilian Kasy



