Stochastic Continuous Time Models

Chandler Lester

Why the Stochastic Continuous Time setting?

Being able to create models in the continuous time setting has a few key advantages:

- Continuous time models can be more intuitive
- The continuous time analog of the Bellman equation the Hamilton-Jacobi-Bellman (HJB) has a unique closed form solution
- These models use continuous stochastic processes for the evolution of variables, which will allow us to examine distributions of variables

Why are continuous time models more intuitive?

- We might believe some variables evolve continuously
- Stock prices
- Productivity/technological progress
- etc.
- We might also believe that a variable has a continuous pdf and has an approximately continuous distribution

The Hamilton-Jacobi-Bellman Equation

A general HJB equation is:

$$
\rho V(x)=\max _{c} u(c)+a(x) V^{\prime}(x)+\frac{1}{2} b(x)^{2} V^{\prime \prime}(x)
$$

with

$$
d x=a(x) d t+b(x) d W_{t}
$$

- This can be derived from a discrete Bellman equation using Itô calculus
- It has a unique solution to the value function problem
- This unique solution is something we call a viscosity solution
- It also only requires weak boundary conditions

Deriving The HJB I

An intuitive way to find HJB is to start with the discrete time Bellman equation (Dixit, 1993).

$$
V(k, t)=\max _{c} u(c) \Delta t+e^{-\rho \Delta t} \mathbb{E}[V(k+\Delta k, t+\Delta t)]
$$

Then, using the power series expansion of $e^{-\rho \Delta t}$:
$\rho \Delta t V(k, t)=\max _{c} u(c) \Delta t+(1-\rho \Delta t) \mathbb{E}[V(k+\Delta k, t+\Delta t)-V(k, t)]$
Next we have to use stochastic calculus to find the value of this expectation

Deriving The HJB II

Suppose:

$$
\Delta k=a(k) \Delta t+b(k) \Delta W t
$$

Where ΔW_{t} is the increment of the Wiener process or $\varepsilon \sqrt{\Delta t}$
Using Itô's lemma:
$V(k+\Delta k, t+\Delta t)-V(k, t)=V_{t}(k, t) \Delta t+V_{k}(k, t)(\Delta k)+\frac{1}{2} V_{k k}(k, t)(\Delta k)^{2}$
Carrying through the expectation will yield:

$$
\begin{aligned}
& \mathbb{E}[V(k+\Delta k, t+\Delta t)-V(k, t)]= \\
& V_{t}(k, t) \Delta t+V_{k}(k, t) a(k) \Delta t+\frac{1}{2} V_{k k}(k, t) b(k)^{2} \Delta t
\end{aligned}
$$

Deriving The HJB III

Plugging this into our previous equation:

$$
\begin{aligned}
& \rho \Delta t V(k, t)=\max _{c} u(c) \Delta t \\
& \quad+(1-\rho \Delta t)\left(V_{t}(k, t)+V_{k}(k, t) a(k)+\frac{1}{2} V_{k k}(k, t) b(k)^{2}\right) \Delta t
\end{aligned}
$$

Then if we divide by Δt and take the limit as $\Delta t \rightarrow 0$ we get the standard HJB

$$
\rho V(k)=\max _{c} u(c)+V_{t}(k, t)+V_{k}(k, t) a(k)+\frac{1}{2} V_{k k}(k, t) b(k)^{2}
$$

A Special Case with an Analytical Solution I

- Preferences: $u(c)=\log c$
- Technology: $z F(k)=z k$
- Productivity follows a generic diffusion process:

$$
d z=\mu(z) d t+\sigma(z) d W_{t}
$$

- Capital evolves according to:

$$
d k=(z-\rho-\delta) k d t
$$

- Thus our HJB equation is:

$$
\begin{aligned}
\rho V(k, z)=\max _{c} \log c & +V_{k}(k, z)(z k-\delta k-c) \\
& +V_{z}(k, z) \mu(z)+\frac{1}{2} V_{z z}(k, z) \sigma^{2}(z)
\end{aligned}
$$

A Special Case with an Analytical Solution II

- Now suppose:

1. $c=\rho k$, thus $d k=(z-\rho-\delta) k d t$
2. Guess that the value function is of the form:

- $V(k, z)=\nu(z)+\kappa \log (k)$
- Our FOC will be:

$$
u^{\prime}(c)=V_{k}(k, z) \Rightarrow \frac{1}{c}=\frac{\kappa}{k} \rightarrow c=\frac{k}{\kappa}
$$

- plugging this into our HJB equation

$$
\begin{aligned}
\rho[\nu(z)+\kappa \log (k)]=\log (k)- & \log (\kappa)+\frac{\kappa}{k}[z k-\delta k-k / \kappa] \\
& +\nu^{\prime}(z) \mu(z)+\frac{1}{2} \nu^{\prime \prime}(z) \sigma^{2}(z)
\end{aligned}
$$

What is the Viscosity Solution?

- The basic idea is that our value function may have kinks and may not be differentiable
- So, we replace the derivative where it does not exist
- The viscosity solution of an HJB equation will have the following form:
$\rho v\left(x^{*}\right)\left\{\begin{aligned} \leq r\left(x^{*}, \alpha\right)+\underset{\alpha \in A}{\phi^{\prime}(x) f\left(x^{*}, \alpha\right)} & v-\phi \text { has a local max at } x^{*} \\ \geq r\left(x^{*}, \alpha\right)+\underset{\alpha \in A}{\phi^{\prime}(x) f\left(x^{*}, \alpha\right)} & v-\phi \text { has a local min at } x^{*}\end{aligned}\right.$
- If v is differentiable at x^{*} then $v^{\prime}\left(x^{*}\right)=\phi^{\prime}\left(x^{*}\right)$

More on the Viscosity Solution

- If there is Brownian motion in our problem we would see "vanishing viscosity"
- i.e. the movements in a viscous fluid would go to zero
- This method helps us find a unique solution because it eliminates solutions with concave kinks
- Our HJB will converge to a unique viscosity solution given three conditions

1. Monotonicity
2. Consistency
3. Stability

Solving a Stochastic Continuous-Time Problem I

Using numerical methods we can solve a standard HJB equation:

$$
\rho V(x)=\max _{c} u(c)+\mu(x) V_{x}+\frac{1}{2} \sigma(x)^{2} V_{x x}
$$

Where x evolves according to:

$$
d x=\mu(x) d t+\sigma(x) d W_{t}
$$

and

$$
u(c)=\frac{c^{1-\gamma}}{1-\gamma}
$$

Solving a Stochastic Continuous-Time Problem II

Kolmogorov Forward (Fokker-Planck) Equation

- If we want information about the distribution of a parameter we also need to solve the Kolmogorov Forward Equation (KF)
- Suppose we have a diffusion process

$$
d x=\mu(x) d t+\sigma(x) d W_{t} \text { and } x(0)=x_{0}
$$

- Given an initial distribution $g(x, 0)=g_{0}(x)$ then $g(x, t)$ satisfies

$$
\frac{\partial g(x, t)}{\partial t}=-\frac{\partial}{\partial x}[\mu(x) g(x, t)]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[\sigma^{2}(x) g(x, t)\right]
$$

A Steady State Solution I

Key Assumptions:

- We are at steady state, i.e. $V(x, t)=V(x, \infty)$
- And $0=-\frac{\partial}{\partial x}[\mu(x) g(x)]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[\sigma^{2}(x) g(x)\right]$
- We can discretize the HJB over our state spaces
- We can then write our partial derivatives as backward or forward differences
- We'll choose the backward or forward difference based on the drift of our state variable

A Steady State Solution II

- First we need to discretize our HJB equation
- We do this by approximating the derivatives of our Value function

$$
\begin{gathered}
V_{x}\left(x_{i}\right) \approx \frac{V_{i+1}-V_{i}}{\Delta x} \text { or } \frac{V_{i}-V_{i-1}}{\Delta x} \\
\qquad V_{x x}\left(x_{i}\right) \approx \frac{V_{i+1}-2 V_{i}+V_{i-1}}{(\Delta x)^{2}}
\end{gathered}
$$

A Steady State Solution III

- Thus, the discretized HJB will be:

$$
\rho V\left(x_{i}\right)=u\left(c_{i}\right)+V_{x}\left(x_{i}\right) \mu(x)+\frac{1}{2} V_{x x}\left(x_{i}\right) \sigma(x)^{2}
$$

- Where

$$
c_{i}=\left(u^{\prime}\right)^{-1}\left[V_{x}\left(x_{i}\right)\right]
$$

- Now that the HJB is discretized we use finite difference method to find the steady state solution

A Steady State Solution IV

The HJB Algorithm, the implicit method:

1. Compute V_{x} for all x
2. Compute the value of consumption from $c_{i}=\left(u^{\prime}\right)^{-1}\left[V_{x}\left(x_{i}\right)\right]$
3. Implement an upwind scheme to find "correct" V_{x}
4. Using the coefficients determined by the upwind scheme create a transition matrix for this system
5. Solve the following system of non-linear equations

$$
\rho V^{n+1}+\frac{V^{n+1}-V^{n}}{\Delta}=u(V)+A^{n} V^{n+1}
$$

6. Iterate until $V^{n+1}-V^{n} \approx 0$

A Steady State Solution V

The KF Algorithm, the implicit method:

1. Discretize the KF equation.

- This will give us the eigenvalue problem $A^{T} g=0$

2. Solve this system for \tilde{g}
3. Normalize \tilde{g} to get g

A Time Dependent Solution I

Before you can compute a time dependent system you need:

1. An initial condition for KF

- This can be found similarly to the steady state value

2. A terminal condition for the HJB

A Time Dependent Solution II

The HJB Algorithm:

1. Compute V_{x} for all x
2. Compute the value of consumption from $c_{i}=\left(u^{\prime}\right)^{-1}\left[V_{x}\left(x_{i}\right)\right]$
3. Implement an upwind scheme to find "correct" V_{x}
4. Using the coefficients determined by the upwind scheme create a transition matrix for this system
5. Solve the following system of non-linear equations iterating backward in time from the steady state

$$
\rho V^{t+1}+\frac{V^{t+1}-V^{t}}{\Delta}=u^{t+1}+A^{t} V^{t+1}
$$

A Time Dependent Solution III

The KF Algorithm:

1. Load the transition matrix found by solving the HJB, starting from A_{1}

- This will give us the eigenvalue problem

$$
g_{t+1}=\left(I-A_{t}^{T} d t\right)^{-1} g_{t}
$$

- There is no need for rescaling since this scheme preserves mass

2. Repeat for all time periods

A Time Dependent Solution with Shocks

The Algorithm:

1. Compute the steady state, with idiosyncratic shocks
2. Linearize the system about the steady state

- This requires automatic differentiation

3. If necessary reduce the model

- Distribution Reduction
- Value Function Reduction

4. Solve the linearized (reduced) system
5. Analyze aggregate shocks to this system using the time dependent equations

Skip to end

A Krusell-Smith Model I

From Ahn et al. (2018).

- Agents have preferences described by the following utility function

$$
\mathbb{E}_{0}=\int_{0}^{\infty} e^{-\rho t} \frac{c_{j t}^{1-\theta}}{1-\theta} d t
$$

- Also households have idiosyncratic labor productivity $z_{j t} \in\left\{z_{L}, z_{H}\right\}$.
- Households switch between these two values according to a Poisson process with frequency λ_{L} and λ_{H}

A Krusell-Smith Model II

- A representative firm has the following production function

$$
Y_{t}=e^{Z_{t}} K_{t}^{\alpha} N_{t}^{1-\alpha}
$$

- Where Z_{t} evolves according to the following process

$$
d Z_{t}=-\eta Z_{t} d t+\sigma d W_{t}
$$

A Krusell-Smith Model III

Equilibrium in this model is given by

$$
\begin{align*}
& \rho v_{t}(a, z)=\max _{c} u(c)+\partial_{a} v_{t}(a, z)\left(w_{t} z+r_{t} a-c\right) \\
& +\lambda_{z}\left(v_{t}\left(a, z^{\prime}\right)-v_{t}(a, z)\right)+\frac{1}{d t} \mathbb{E}_{t}\left[d v_{t}(a, z)\right] \tag{1}\\
& \frac{d g_{t}(a, z)}{d t}=-\partial_{a}\left[s_{t}(a, z) g_{t}(a, z)\right]-\lambda_{z} g_{t}(a, z)+\lambda_{z^{\prime}} g_{t}\left(a, z^{\prime}\right) \tag{2}
\end{align*}
$$

A Krusell-Smith Model IV

And by the following conditions

$$
\begin{gather*}
w_{t}=(1-\alpha) e^{Z_{t}} K_{t}^{\alpha} \bar{N}^{-\alpha} \tag{3}\\
r_{t}=\alpha e^{Z_{t}} K_{t}^{\alpha-1} \bar{N}^{1-\alpha}-\delta \tag{4}\\
K_{t}=\int a g_{t}(a, z) d a d z \tag{5}
\end{gather*}
$$

With optimal savings policy

$$
\begin{equation*}
s_{t}(a, z)=w_{t} z+r_{t} a-c_{t}(a, z) \tag{6}
\end{equation*}
$$

A Krusell-Smith Model V

The steady state for this system is given by

$$
\begin{gather*}
\rho v(a, z)=\max _{c} u(c)+\partial_{a} v(a, z)(w z+r a-c) \lambda_{z}\left(v\left(a, z^{\prime}\right)-v(a, z)\right) \tag{1}\\
0=-\partial_{a}[s(a, z) g(a, z)]-\lambda_{z} g(a, z)+\lambda_{z^{\prime}} g\left(a, z^{\prime}\right) \tag{2}\\
w=(1-\alpha) K_{t}^{\alpha} \bar{N}^{-\alpha} \tag{3}\\
r=\alpha K_{t}^{\alpha-1} \bar{N}^{1-\alpha}-\delta \tag{4}\\
K=\int a g(a, z) d a d z \tag{5}
\end{gather*}
$$

With optimal savings policy

$$
\begin{equation*}
s(a, z)=w z+r a-c(a, z) \tag{6}
\end{equation*}
$$

A Krusell-Smith Model VI

The discretized steady state is the solution to:

$$
\begin{gather*}
\rho v=u(v)+A(v ; p) v \tag{1}\\
0=A(v ; p)^{T} g \tag{2}\\
p=F(g) \tag{3}
\end{gather*}
$$

A Krusell-Smith Model VII

After finding the steady-state we linearize the following system:

$$
\begin{gather*}
\rho v_{t}=u\left(v_{t}\right)+A\left(v_{t} ; p_{t}\right) v_{t}+\frac{1}{d t} \mathbb{E}_{t} d v_{t} \tag{1}\\
\frac{\partial g_{t}}{\partial t}=A\left(v_{t} ; p_{t}\right)^{T} g_{t} \tag{2}\\
d Z_{t}=-\eta Z_{t} d t+\sigma d W_{t} \tag{3}\\
p_{t}=F\left(g_{t} ; Z_{t}\right) \tag{4}
\end{gather*}
$$

A Krusell-Smith Model VIII

The first order Taylor expansion of this system can be written as:

$$
\mathbb{E}_{t}\left[\begin{array}{c}
d \hat{v}_{t} \\
d \hat{g}_{t} \\
d Z_{t} \\
0
\end{array}\right]=\left[\begin{array}{cccc}
B_{g g} & 0 & 0 & B_{v p} \\
B_{g v} & B_{g g} & 0 & B_{g p} \\
0 & 0 & -\eta & 0 \\
0 & B_{p g} & B_{p Z} & -I
\end{array}\right]\left[\begin{array}{c}
\hat{v}_{t} \\
\hat{g} \\
Z_{t} \\
\hat{p}_{t}
\end{array}\right] d t
$$

A Krusell-Smith Model IX

The solution to this system will be: After finding the steady-state we linearize the following system:

$$
\begin{gather*}
\hat{v}_{t}=D_{v g} \hat{g}_{t}+D_{v Z} Z_{t} \tag{1}\\
\frac{\partial \hat{g}_{t}}{\partial t}=\left(B_{g g}+B_{g p} B_{p g}+B_{g v} D_{v g}\right) \hat{g}_{t}+\left(B_{g p} B_{p Z}+B_{g v} D_{v z}\right) Z_{t} \tag{2}\\
d Z_{t}=-\eta Z_{t} d t+\sigma d W_{t} \tag{3}\\
\hat{p}_{t}=B_{p g} \hat{g}_{t}+B_{p Z} Z_{t} \tag{4}
\end{gather*}
$$

A Two Asset HANK Model I

Each household has preferences given by

$$
\begin{equation*}
\mathbb{E}_{0} \int_{0}^{\infty} e^{-(\rho+\zeta) t} \log c_{j t} d t \tag{1}
\end{equation*}
$$

They hold liquid or illiquid assets b_{t} and a_{t}

$$
\begin{gather*}
\frac{d b_{j t}}{d t}=(1-\tau) w z_{j t}+T+r^{b} b_{j t}-\chi\left(d_{j t}, a_{j t}\right)-c_{j t}-d_{j t} \tag{2}\\
\frac{d a_{j t}}{d t}=r_{t}^{a} a_{j t}+d_{j t} \tag{3}
\end{gather*}
$$

labor productivity $z_{j t}$ follows a discrete-state Poisson process and switch states with Poisson intensity $\lambda_{z z^{\prime}}$

A Two Asset HANK Model II

There is a representative firm with the Cobb-Douglas production function

$$
\begin{equation*}
Y_{t}=e^{Z_{t}} K_{t}^{\alpha} \bar{L}^{1-\alpha} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
d Z_{t}=-\eta Z_{t} d t+\sigma d W_{t} \tag{5}
\end{equation*}
$$

The government adjusts each period to meet the following constraint:

$$
\begin{equation*}
\int_{0}^{1} \tau w_{t} z_{j t} d j=G_{t}+\int_{0}^{1} T d j \tag{6}
\end{equation*}
$$

The asset market clearing condition is:

$$
\begin{equation*}
K_{t}=\int_{0}^{1} a_{j t} d j \tag{7}
\end{equation*}
$$

A Two Asset HANK Model III

The household's HJB will be:

$$
\begin{aligned}
(\rho+ & \zeta) v_{t}(a, b, z)=\max _{c, d} \log c \\
& +\partial_{b} v_{t}(a, b, z)\left((1-\tau) w z_{j t}+T+r^{b} b_{j t}-\chi\left(d_{j t}, a_{j t}\right)-c_{j t}-d_{j t}\right) \\
& +\partial_{a} v_{t}(a, b, z)\left(r_{t}^{a} a_{j t}+d_{j t}\right) \\
& +\sum_{z^{\prime}} \lambda_{z z^{\prime}}\left(v_{t}\left(a, b, z^{\prime}\right)-v_{t}(a, b, z)\right)+\frac{1}{d t} \mathbb{E}_{t}\left[d v_{t}(a, b, z)\right]
\end{aligned}
$$

A Two Asset HANK Model IV

$$
\begin{aligned}
\frac{d g_{t}(a, b, z)}{d t}= & -\partial_{a}\left(s_{t}^{a}(a, b, z) g_{t}(a, b, z)\right)-\partial_{b}\left(s_{t}^{b}(a, b, z) g_{t}(a, b, z)\right) \\
& -\sum_{z^{\prime}} \lambda_{z z^{\prime}} g_{t}(a, b, z)+\sum_{z^{\prime}} \lambda_{z^{\prime} z} g_{t}(a, b, z) \\
& -\zeta g_{t}(a, b, z)+\zeta \delta(a) \delta(b) g^{*}(z)
\end{aligned}
$$

A Two Asset HANK Model V

Equilibrium prices will solve:

$$
\begin{align*}
& r_{t}^{a}=\alpha e^{Z_{t}} K_{t}^{\alpha-1} \bar{L}^{1-\alpha}-\delta \tag{8}\\
& w_{t}=(1-\alpha) e^{Z_{t}} K_{t}^{\alpha} \bar{L}^{-\alpha} \tag{9}
\end{align*}
$$

Market clearing will be determined by:

$$
\begin{align*}
K_{t} & =\int a g_{t}(a, b, z) d a d b d z \tag{10}\\
B & =\int b g_{t}(a, b, z) d a d b d z \tag{11}
\end{align*}
$$

A Two Asset HANK Model VI

(a) Liquid assets b

(b) Illiquid assets a

A Two Asset HANK Model VII

(a) Distribution in Steady State

Quarterly MPC $\$ 500$

(b) MPC Function

A Two Asset HANK Model IX

Conclusion

- Modeling large complicated markets with heterogeneity is efficient in this setting
- Krusell-Smith model: 0.116-0.267 sec (2016 Mac-Book Pro)
- Two Asset HANK: 148.14-286.24 sec (2016 Mac-Book Pro)
- The inequality shown in these models is an important feature not represent in representative agents models
- In this setting we can further explore inequality using distributions
- It would be better to focus on using microdata that captures the distribution of variables in the future

Relevant Literature I

Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach by Achdou, Han, Lasry, Lions, \& Moll (Forthcoming)

Monetary Policy According to HANK
by Kaplan, Moll, \& Violante (2018)
When Inequality Matters for Macro and Macro Matters for Inequality by Ahn, Kaplan, Moll, Winberry, \& Wolf (2018)

Identification and Estimation of Heterogeneous Agent Models: A Likelihood Approach by Parra-Alvarez, Posch, \& Wang (CREATES Working paper)

Lifetime Portfolio Selection Under Uncertainty - Continuous-Time Case by Merton (1969)

Viscosity Solutions of Hamilton-Jacobi Equations by Crandall \& Lions (1983)

Heterogeneous Households Under Uncertainty by Pietro Veronesi (NBER Working paper)

Relevant Literature II

Continuous-Time Finance
by Merton (1992)
The Art of Smooth Pasting by Dixit (1992)

Investment under Uncertainty
by Dixit \& Pindyck (1994)
The Economics of Inaction
by Stokey (2009)

