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Why the Stochastic Continuous Time setting?

Being able to create models in the continuous time setting has a
few key advantages:

I Continuous time models can be more intuitive

I The continuous time analog of the Bellman equation the
Hamilton-Jacobi-Bellman (HJB) has a unique closed form
solution

I These models use continuous stochastic processes for the
evolution of variables, which will allow us to examine
distributions of variables
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Intuition

Why are continuous time models more intuitive?
I We might believe some variables evolve continuously

I Stock prices
I Productivity/technological progress
I etc.

I We might also believe that a variable has a continuous pdf
and has an approximately continuous distribution
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The Hamilton-Jacobi-Bellman Equation

A general HJB equation is:

ρV (x) = max
c

u(c) + a(x)V ′(x) +
1

2
b(x)2V ′′(x)

with
dx = a(x)dt+ b(x)dWt

I This can be derived from a discrete Bellman equation using
Itô calculus

I It has a unique solution to the value function problem

I This unique solution is something we call a viscosity solution

I It also only requires weak boundary conditions
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Deriving The HJB I

An intuitive way to find HJB is to start with the discrete time
Bellman equation (Dixit, 1993).

V (k, t) = max
c

u(c)∆t+ e−ρ∆tE[V (k + ∆k, t+ ∆t)]

Then, using the power series expansion of e−ρ∆t:

ρ∆tV (k, t) = max
c

u(c)∆t+(1−ρ∆t)E[V (k+∆k, t+∆t)−V (k, t)]

Next we have to use stochastic calculus to find the value of this
expectation
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Deriving The HJB II

Suppose:
∆k = a(k)∆t+ b(k)∆Wt

Where ∆Wt is the increment of the Wiener process or ε
√

∆t

Using Itô’s lemma:

V (k+∆k, t+∆t)−V (k, t) = Vt(k, t)∆t+Vk(k, t)(∆k)+
1

2
Vkk(k, t)(∆k)2

Carrying through the expectation will yield:

E[V (k + ∆k, t+ ∆t)− V (k, t)] =

Vt(k, t)∆t+ Vk(k, t)a(k)∆t+
1

2
Vkk(k, t)b(k)2∆t
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Deriving The HJB III

Plugging this into our previous equation:

ρ∆tV (k, t) = max
c

u(c)∆t

+ (1− ρ∆t)
(
Vt(k, t) + Vk(k, t)a(k) +

1

2
Vkk(k, t)b(k)2

)
∆t

Then if we divide by ∆t and take the limit as ∆t→ 0 we get the
standard HJB

ρV (k) = max
c

u(c) + Vt(k, t) + Vk(k, t)a(k) +
1

2
Vkk(k, t)b(k)2
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A Special Case with an Analytical Solution I

I Preferences: u(c) = log c

I Technology: zF (k) = zk

I Productivity follows a generic diffusion process:

dz = µ(z)dt+ σ(z)dWt

I Capital evolves according to:

dk = (z − ρ− δ)kdt

I Thus our HJB equation is:

ρV (k, z) = max
c

log c+ Vk(k, z)(zk − δk − c)

+ Vz(k, z)µ(z) +
1

2
Vzz(k, z)σ

2(z)
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A Special Case with an Analytical Solution II

I Now suppose:

1. c = ρk, thus dk = (z − ρ− δ)kdt
2. Guess that the value function is of the form:

I V (k, z) = ν(z) + κlog(k)

I Our FOC will be:

u′(c) = Vk(k, z)⇒
1

c
=
κ

k
→ c =

k

κ

I plugging this into our HJB equation

ρ[ν(z) + κ log(k)] = log(k)− log(κ) +
κ

k
[zk − δk − k/κ]

+ ν ′(z)µ(z) +
1

2
ν ′′(z)σ2(z)
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What is the Viscosity Solution?

I The basic idea is that our value function may have kinks and
may not be differentiable

I So, we replace the derivative where it does not exist

I The viscosity solution of an HJB equation will have the
following form:

ρv(x∗)


≤ r(x∗, α) + φ′(x)f(x∗, α)

α∈A
v − φ has a local max at x∗

≥ r(x∗, α) + φ′(x)f(x∗, α)
α∈A

v − φ has a local min at x∗

I If v is differentiable at x∗ then v′(x∗) = φ′(x∗)
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More on the Viscosity Solution

I If there is Brownian motion in our problem we would see
“vanishing viscosity”

I i.e. the movements in a viscous fluid would go to zero

I This method helps us find a unique solution because it
eliminates solutions with concave kinks

I Our HJB will converge to a unique viscosity solution given
three conditions

1. Monotonicity
2. Consistency
3. Stability
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Solving a Stochastic Continuous-Time Problem I

Using numerical methods we can solve a standard HJB equation:

ρV (x) = max
c

u(c) + µ(x)Vx +
1

2
σ(x)2Vxx

Where x evolves according to:

dx = µ(x)dt+ σ(x)dWt

and

u(c) =
c1−γ

1− γ
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Solving a Stochastic Continuous-Time Problem II

Kolmogorov Forward (Fokker-Planck) Equation

I If we want information about the distribution of a parameter
we also need to solve the Kolmogorov Forward Equation (KF)

I Suppose we have a diffusion process

dx = µ(x)dt+ σ(x)dWt and x(0) = x0

I Given an initial distribution g(x, 0) = g0(x) then g(x, t)
satisfies

∂g(x, t)

∂t
= − ∂

∂x
[µ(x)g(x, t)] +

1

2

∂2

∂x2
[σ2(x)g(x, t)]
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A Steady State Solution I

Key Assumptions:

I We are at steady state, i.e. V (x, t) = V (x,∞)

I And 0 = − ∂
∂x [µ(x)g(x)] + 1

2
∂2

∂x2
[σ2(x)g(x)]

I We can discretize the HJB over our state spaces

I We can then write our partial derivatives as backward or
forward differences

I We’ll choose the backward or forward difference based on the
drift of our state variable
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A Steady State Solution II

I First we need to discretize our HJB equation

I We do this by approximating the derivatives of our Value
function

Vx(xi) ≈
Vi+1 − Vi

∆x
or

Vi − Vi−1

∆x

Vxx(xi) ≈
Vi+1 − 2Vi + Vi−1

(∆x)2
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A Steady State Solution III

I Thus, the discretized HJB will be:

ρV (xi) = u(ci) + Vx(xi)µ(x) +
1

2
Vxx(xi)σ(x)2

I Where

ci = (u′)−1[Vx(xi)]

I Now that the HJB is discretized we use finite difference
method to find the steady state solution
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A Steady State Solution IV

The HJB Algorithm, the implicit method:

1. Compute Vx for all x

2. Compute the value of consumption from ci = (u′)−1[Vx(xi)]

3. Implement an upwind scheme to find “correct” Vx

4. Using the coefficients determined by the upwind scheme
create a transition matrix for this system

5. Solve the following system of non-linear equations

ρV n+1 +
V n+1 − V n

∆
= u(V ) +AnV n+1

6. Iterate until V n+1 − V n ≈ 0
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A Steady State Solution V

The KF Algorithm, the implicit method:

1. Discretize the KF equation.
I This will give us the eigenvalue problem AT g = 0

2. Solve this system for g̃

3. Normalize g̃ to get g
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A Time Dependent Solution I

Before you can compute a time dependent system you need:

1. An initial condition for KF

I This can be found similarly to the steady state value

2. A terminal condition for the HJB
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A Time Dependent Solution II

The HJB Algorithm:

1. Compute Vx for all x

2. Compute the value of consumption from ci = (u′)−1[Vx(xi)]

3. Implement an upwind scheme to find “correct” Vx

4. Using the coefficients determined by the upwind scheme
create a transition matrix for this system

5. Solve the following system of non-linear equations iterating
backward in time from the steady state

ρV t+1 +
V t+1 − V t

∆
= ut+1 +AtV t+1
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A Time Dependent Solution III

The KF Algorithm:

1. Load the transition matrix found by solving the HJB, starting
from A1

I This will give us the eigenvalue problem

gt+1 = (I −AT
t dt)

−1gt

I There is no need for rescaling since this scheme preserves
mass

2. Repeat for all time periods
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A Time Dependent Solution with Shocks

The Algorithm:

1. Compute the steady state, with idiosyncratic shocks

2. Linearize the system about the steady state
I This requires automatic differentiation

3. If necessary reduce the model
I Distribution Reduction
I Value Function Reduction

4. Solve the linearized (reduced) system

5. Analyze aggregate shocks to this system using the time
dependent equations

Skip to end
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A Krusell-Smith Model I

From Ahn et al. (2018).

I Agents have preferences described by the following utility
function

E0 =

∫ ∞
0

e−ρt
c1−θ
jt

1− θ
dt

I Also households have idiosyncratic labor productivity
zjt ∈ {zL, zH}.

I Households switch between these two values according to a
Poisson process with frequency λL and λH
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A Krusell-Smith Model II

I A representative firm has the following production function

Yt = eZtKα
t N

1−α
t

I Where Zt evolves according to the following process

dZt = −ηZtdt+ σdWt
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A Krusell-Smith Model III

Equilibrium in this model is given by

ρvt(a, z) = max
c

u(c) + ∂avt(a, z)(wtz + rta− c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et[dvt(a, z)] (1)

dgt(a, z)

dt
= −∂a[st(a, z)gt(a, z)]− λzgt(a, z) + λz′gt(a, z

′) (2)
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A Krusell-Smith Model IV

And by the following conditions

wt = (1− α)eZtKα
t N̄
−α (3)

rt = αeZtKα−1
t N̄1−α − δ (4)

Kt =

∫
agt(a, z)dadz (5)

With optimal savings policy

st(a, z) = wtz + rta− ct(a, z) (6)
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A Krusell-Smith Model V

The steady state for this system is given by

ρv(a, z) = max
c

u(c) + ∂av(a, z)(wz+ ra− c)λz(v(a, z′)− v(a, z)) (1)

0 = −∂a[s(a, z)g(a, z)]− λzg(a, z) + λz′g(a, z′) (2)

w = (1− α)Kα
t N̄
−α (3)

r = αKα−1
t N̄1−α − δ (4)

K =

∫
ag(a, z)dadz (5)

With optimal savings policy

s(a, z) = wz + ra− c(a, z) (6)
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A Krusell-Smith Model VI

The discretized steady state is the solution to:

ρv = u(v) +A(v; p)v (1)

0 = A(v; p)T g (2)

p = F (g) (3)
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A Krusell-Smith Model VII

After finding the steady-state we linearize the following system:

ρvt = u(vt) +A(vt; pt)vt +
1

dt
Etdvt (1)

∂gt
∂t

= A(vt; pt)
T gt (2)

dZt = −ηZtdt+ σdWt (3)

pt = F (gt;Zt) (4)
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A Krusell-Smith Model VIII

The first order Taylor expansion of this system can be written as:

Et


dv̂t
dĝt
dZt
0

 =


Bgg 0 0 Bvp
Bgv Bgg 0 Bgp
0 0 −η 0
0 Bpg BpZ −I



v̂t
ĝ
Zt
p̂t

 dt
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A Krusell-Smith Model IX

The solution to this system will be: After finding the steady-state
we linearize the following system:

v̂t = Dvg ĝt +DvZZt (1)

∂ĝt
∂t

= (Bgg +BgpBpg +BgvDvg)ĝt + (BgpBpZ +BgvDvz)Zt (2)

dZt = −ηZtdt+ σdWt (3)

p̂t = Bpg ĝt +BpZZt (4)
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Results I
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Results II
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A Two Asset HANK Model I

Each household has preferences given by

E0

∫ ∞
0

e−(ρ+ζ)t log cjtdt (1)

They hold liquid or illiquid assets bt and at

dbjt
dt

= (1− τ)wzjt + T + rbbjt − χ(djt, ajt)− cjt − djt (2)

dajt
dt

= rat ajt + djt (3)

labor productivity zjt follows a discrete-state Poisson process and
switch states with Poisson intensity λzz′
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A Two Asset HANK Model II

There is a representative firm with the Cobb-Douglas production
function

Yt = eZtKα
t L̄

1−α (4)

where
dZt = −ηZtdt+ σdWt (5)

The government adjusts each period to meet the following
constraint: ∫ 1

0
τwtzjtdj = Gt +

∫ 1

0
Tdj (6)

The asset market clearing condition is:

Kt =

∫ 1

0
ajtdj (7)
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A Two Asset HANK Model III

The household’s HJB will be:

(ρ+ ζ)vt(a, b, z) = max
c,d

log c

+ ∂bvt(a, b, z)((1− τ)wzjt + T + rbbjt − χ(djt, ajt)− cjt − djt)
+ ∂avt(a, b, z)(r

a
t ajt + djt)

+
∑
z′

λzz′(vt(a, b, z
′)− vt(a, b, z)) +

1

dt
Et[dvt(a, b, z)]
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A Two Asset HANK Model IV

dgt(a, b, z)

dt
= −∂a

(
sat (a, b, z)gt(a, b, z)

)
− ∂b

(
sbt(a, b, z)gt(a, b, z)

)
−
∑
z′

λzz′gt(a, b, z) +
∑
z′

λz′zgt(a, b, z)

− ζgt(a, b, z) + ζδ(a)δ(b)g∗(z)
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A Two Asset HANK Model V

Equilibrium prices will solve:

rat = αeZtKα−1
t L̄1−α − δ (8)

wt = (1− α)eZtKα
t L̄
−α (9)

Market clearing will be determined by:

Kt =

∫
agt(a, b, z)dadbdz (10)

B =

∫
bgt(a, b, z)dadbdz (11)
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A Two Asset HANK Model VI
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A Two Asset HANK Model VII
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A Two Asset HANK Model VIII
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A Two Asset HANK Model IX
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Conclusion

I Modeling large complicated markets with heterogeneity is
efficient in this setting

I Krusell-Smith model: 0.116-0.267 sec (2016 Mac-Book Pro)
I Two Asset HANK: 148.14-286.24 sec (2016 Mac-Book Pro)

I The inequality shown in these models is an important feature
not represent in representative agents models

I In this setting we can further explore inequality using
distributions

I It would be better to focus on using microdata that captures
the distribution of variables in the future
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